Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Plant counting is a critical aspect of crop management, providing farmers with valuable insights into seed germination success and within-field variation in crop population density, both of which are key indicators of crop yield and quality. Recent advancements in Unmanned Aerial System (UAS) technology, coupled with deep learning techniques, have facilitated the development of automated plant counting methods. Various computer vision models based on UAS images are available for detecting and classifying crop plants. However, their accuracy relies largely on the availability of substantial manually labeled training datasets. The objective of this study was to develop a robust corn counting model by developing and integrating an automatic image annotation framework. This study used high-spatial-resolution images collected with a DJI Mavic Pro 2 at the V2–V4 growth stage of corn plants from a field in Wooster, Ohio. The automated image annotation process involved extracting corn rows and applying image enhancement techniques to automatically annotate images as either corn or non-corn, resulting in 80% accuracy in identifying corn plants. The accuracy of corn stand identification was further improved by training four deep learning (DL) models, including InceptionV3, VGG16, VGG19, and Vision Transformer (ViT), with annotated images across various datasets. Notably, VGG16 outperformed the other three models, achieving an F1 score of 0.955. When the corn counts were compared to ground truth data across five test regions, VGG achieved an R2 of 0.94 and an RMSE of 9.95. The integration of an automated image annotation process into the training of the DL models provided notable benefits in terms of model scaling and consistency. The developed framework can efficiently manage large-scale data generation, streamlining the process for the rapid development and deployment of corn counting DL models.more » « less
-
One of the most important and widespread corn/maize virus diseases is maize dwarf mosaic (MDM), which can be induced by sugarcane mosaic virus (SCMV). This study explores a machine learning analysis of five-band multispectral imagery collected via an unmanned aerial system (UAS) during the 2021 and 2022 seasons for SCMV disease detection in corn fields. The three primary objectives are to (i) determine the spectral bands and vegetation indices that are most important or correlated with SCMV infection in corn, (ii) compare spectral signatures of mock-inoculated and SCMV-inoculated plants, and (iii) compare the performance of four machine learning algorithms, including ridge regression, support vector machine (SVM), random forest, and XGBoost, in predicting SCMV during early and late stages in corn. On average, SCMV-inoculated plants had higher reflectance values for blue, green, red, and red-edge bands and lower reflectance for near-infrared as compared to mock-inoculated samples. Across both years, the XGBoost regression model performed best for predicting disease incidence percentage (R2 = 0.29, RMSE = 29.26), and SVM classification performed best for the binary prediction of SCMV-inoculated vs. mock-inoculated samples (72.9% accuracy). Generally, model performances appeared to increase as the season progressed into August and September. According to Shapley additive explanations (SHAP analysis) of the top performing models, the simplified canopy chlorophyll content index (SCCCI) and saturation index (SI) were the vegetation indices that consistently had the strongest impacts on model behavior for SCMV disease regression and classification prediction. The findings of this study demonstrate the potential for the development of UAS image-based tools for farmers, aiming to facilitate the precise identification and mapping of SCMV infection in corn.more » « less
-
IntroductionAdvancements in machine learning (ML) algorithms that make predictions from data without being explicitly programmed and the increased computational speeds of graphics processing units (GPUs) over the last decade have led to remarkable progress in the capabilities of ML. In many fields, including agriculture, this progress has outpaced the availability of sufficiently diverse and high-quality datasets, which now serve as a limiting factor. While many agricultural use cases appear feasible with current compute resources and ML algorithms, the lack of reusable hardware and software components, referred to as cyberinfrastructure (CI), for collecting, transmitting, cleaning, labeling, and training datasets is a major hindrance toward developing solutions to address agricultural use cases. This study focuses on addressing these challenges by exploring the collection, processing, and training of ML models using a multimodal dataset and providing a vision for agriculture-focused CI to accelerate innovation in the field. MethodsData were collected during the 2023 growing season from three agricultural research locations across Ohio. The dataset includes 1 terabyte (TB) of multimodal data, comprising Unmanned Aerial System (UAS) imagery (RGB and multispectral), as well as soil and weather sensor data. The two primary crops studied were corn and soybean, which are the state's most widely cultivated crops. The data collected and processed from this study were used to train ML models to make predictions of crop growth stage, soil moisture, and final yield. ResultsThe exercise of processing this dataset resulted in four CI components that can be used to provide higher accuracy predictions in the agricultural domain. These components included (1) a UAS imagery pipeline that reduced processing time and improved image quality over standard methods, (2) a tabular data pipeline that aggregated data from multiple sources and temporal resolutions and aligned it with a common temporal resolution, (3) an approach to adapting the model architecture for a vision transformer (ViT) that incorporates agricultural domain expertise, and (4) a data visualization prototype that was used to identify outliers and improve trust in the data. DiscussionFurther work will be aimed at maturing the CI components and implementing them on high performance computing (HPC). There are open questions as to how CI components like these can best be leveraged to serve the needs of the agricultural community to accelerate the development of ML applications in agriculture.more » « lessFree, publicly-accessible full text available January 23, 2026
-
null (Ed.)Sustainable provisioning of energy to society requires consideration of the nexus between food–energy–water (FEW) flows while meeting human needs and respecting nature's capacity to provide goods and services. In this work, we explore the FEW nexus of conventional and techno-ecologically synergistic (TES) systems by evaluating combinations of various technological, agricultural, and ecological strategies from the viewpoints of electricity generation, food production, life cycle water use, carbon footprint, nutrient runoff, corporate profitability, and societal well-being. We evaluate activities related to power generation (coal and gas extraction and use, transportation options, cooling technologies, solar panels, wind turbines), food production (farming with and without tillage), waste utilization (carbon dioxide capture and conversion to hydrocarbons, green hydrogen), and ecological restoration (forests and wetlands). Application of this framework to the Muskingum River watershed in Ohio, U.S.A. indicates that seeking synergies between human and natural systems can provide innovative solutions that improve the FEW nexus while making positive contributions to society with greater respect for nature's limits. We show that the conventional engineering approach of relying only on technological approaches for meeting sustainability objectives can have limited environmental and societal benefits while reducing profitability. In contrast, techno-ecologically synergistic design between agricultural systems and wetlands can reduce nutrient runoff with little compromise in other goals. Additional synergies between farming and photovoltaic systems along with the use of wetlands can further improve the FEW nexus while reducing CO 2 and nutrient emissions, with a relatively small compromise in corporate profitability. These results should motivate further work on innovative TES designs that can provide “win–win” solutions for meeting global energy needs in an environmentally and socially beneficial manner.more » « less
-
null (Ed.)Unmanned aerial systems (UAS) are increasingly used in precision agriculture to collect crop health related data. UAS can capture data more often and more cost-effectively than sending human scouts into the field. However, in large crop fields, flight time, and hence data collection, is limited by battery life. In a conventional UAS approach, human operators are required to exchange depleted batteries many times, which can be costly and time consuming. In this study, we developed a novel, fully autonomous aerial scouting approach that preserves battery life by sampling sections of a field for sensing and predicting crop health for the whole field. Our approach uses reinforcement learning (RL) and convolutional neural networks (CNN) to accurately and autonomously sample the field. To develop and test the approach, we ran flight simulations on an aerial image dataset collected from an 80-acre corn field. The excess green vegetation Index was used as a proxy for crop health condition. Compared to the conventional UAS scouting approach, the proposed scouting approach sampled 40% of the field, predicted crop health with 89.8% accuracy, reduced labor cost by 4.8× and increased agricultural profits by 1.36×.more » « less
An official website of the United States government

Full Text Available